STUDIES IN THE FIELD OF DIURETIC AGENTS

Part VII. 4-Chloro-2'-methyl-3-sulphamoylbenzanilide
By V. Petrow, O. Stephenson and A. M. Wild
From the British Drug Houses, Ltd., Graham Street, London, N. 1

Received August 14, 1962
A new route to the anilides of 4-halogeno-3-sulphamoylbenzoic acid is described. These novel compounds, and in particular 4-chloro-2'-methyl-3-sulphamoylbenzanilide, are found to be potent orally active diuretic agents.

In Part VI of this series (Jackman, Petrow, Stephenson and Wild, 1962) the preparation was described of some 4-substituted 3-sulphamoylbenzoic acids, a new class of orally active diuretic agents with only slight inhibitory activity against carbonic anhydrase. Such compounds (I) showed optimal activity when the substituent R was a fluoro-, chloro- or bromoatom. The present study deals with some related carboxyamides (II).

Work was originally confined to the preparation of the more readily available 4 -chloro-compounds (II: $\mathrm{R}=\mathrm{Cl}$), but, following early promising biological results, was later extended to analogous types.

The unsubstituted amide (II; R=Cl; $\mathrm{R}^{\prime}=\mathrm{R}^{\prime \prime}=\mathrm{H}$) was obtained readily from 4-chloro-3-chlorosulphonylbenzoyl chloride, itself prepared by a variation of the method described by Ullmann in 1896. For the preparation of substituted carboxyamides, recourse was made to 4-chloro-3-nitrobenzoyl chloride, described by Montagne in 1900. This was condensed with the appropriate amine $\mathrm{R}^{\prime} \mathrm{R}^{\prime \prime} \mathrm{NH}$ to yield the 4 -chloro-3-nitrobenzamide (III; $\mathrm{R}=\mathrm{NO}_{2}$), which was in turn reduced to the corresponding aniline (III; $\mathrm{R}=\mathrm{NH}_{2}$). The last compound was then converted into the required sulphonamide ($I \mathrm{I} ; \mathrm{R}=\mathrm{Cl}$) via the sulphonchloride (III; R $=\mathrm{SO}_{2} \mathrm{Cl}$) as described by Petrow, Stephenson and Wild (1960). (Data for amino and nitro-compounds are in Table I.)

(I)

(II)

(III)

(IV)

(V)

The methyl-, ethyl-, and dimethyl-carboxyamides were all prepared by this route. They resembled the unsubstituted amide in being effective
oral diuretic agents at the $5 \mathrm{mg} . / \mathrm{kg}$. dose level in saline-loaded rats in tests carried out by Dr. A. David and his colleagues.

Extension of this work to the benzanilide derivatives (II; $\mathrm{R}=\mathrm{Cl}$, $\mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=$ aryl) led to a major advance in this field. 4-Chloro-2'-methyl-3-sulphamoylbenzanilide ($\mathrm{II} ; \mathrm{R}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=o$-tolyl), prepared by the method described, proved to be an extremely potent oral diuretic agent with an activity fifty to one hundred times that of the parent acid ($\mathrm{I} ; \mathrm{R}=\mathrm{Cl}$). This important result led to a study of improved methods for the preparation of these compounds. The most satisfactory route discovered depends upon the greater reactivity of the carboxylyl chloride group relative to the sulphonchloride group [compare Wegscheider and Furcht (1902) ; Smiles and Stewart (1921) and Barr, Salminen and Weissberger (1951)]. Thus we found that 4-chloro-3chlorosulphonylbenzoyl chloride condensed readily with one equivalent of o-toluidine, or its hydrochloride, in boiling toluene or chlorobenzene to give a 90 per cent yield of 4-chloro-3-chlorosulphonyl-2'-methylbenzanilide (III; $\mathrm{R}=\mathrm{SO}_{2} \mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=o$-tolyl). The reaction was applied to a whole range of amines including substituted anilines. The sulphonchlorides prepared in this way are summarised in Table II. Reaction of these sulphonchlorides with ammonia or amines furnished the required sulphonamides (Table III) in high yield.

Biological testing of the sulphonamides by Dr. A. David and his colleagues showed that the high oral diuretic activity of the o-toluidide was possessed by several other ortho-substituted analogues, the 4-chloro-2^{\prime}-halogeno-3-sulphamoylbenzanilides (II; $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=o-\mathrm{F}$-, -Cl- or $-\mathrm{Br}^{-} \mathrm{C}_{6} \mathrm{H}_{4}$) being especially active. The corresponding meta($3^{\prime}-$) and para- ($4^{\prime}-$) substituted compounds were much less active, as was the compound unsubstituted in the aniline ring (II; $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}$, $\mathrm{R}^{\prime \prime}=\mathrm{Ph}$). In the last compound, activity was increased by the introduction of a methyl substituent into the carboxyamide, as in 4-chloro-N-methyl-3-sulphamoylbenzanilide (II; $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{Me}, \mathrm{R}^{\prime \prime}=\mathrm{Ph}$), but in general an additional alkyl substituent in the carboxyamide caused no increase in diuretic activity.

2'-Carboxy-4-chloro-3-sulphamoylbenzanilide (II; $\mathrm{R}=\mathrm{Cl}, \mathrm{R}^{\prime}=\mathrm{H}$, $\mathrm{R}^{\prime \prime}=o-\mathrm{CO}_{2} \mathrm{H} \cdot \mathrm{C}_{6} \mathrm{H}_{4}$), a possible metabolite of the active o-toluidide, was prepared by reaction of 4-chloro-3-chlorosulphonylbenzoyl chloride with anthranilic acid or with methyl anthranilate, followed in the latter case by hydrolysis of the ester. It proved to be without diuretic activity.

The introduction of further substituents into the aniline ring of the benzanilide nucleus caused no apparent increase in diuretic activity, though the more active of these types all possessed an ortho-substituent.

Fluoro- and bromo-analogues (II; $\mathrm{R}=\mathrm{F}$ or $\mathrm{Br}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=$ aryl) of the more potent compounds of the chloro-series were prepared by similar reaction techniques and proved to be highly active oral diuretic agents. The corresponding compounds (II; R $=\mathrm{Me}, \mathrm{R}^{\prime}=\mathrm{H}, \mathrm{R}^{\prime \prime}=$ aryl) derived from 4-methyl-3-sulphamoylbenzoic acid were somewhat less effective.
V. PETROW, O. STEPHENSON AND A. M. WILD

DIURETIC AGENTS. PART VII

DIURETIC AGENTS. PART VII
TABLE III continued

V. PETROW, O. STEPHENSON AND A. M. WILD

A few amides (cf. IV) of 2,4-dichloro-5-sulphamoylbenzoic acid were also prepared (cf. Table IV), but these had no diuretic activity at a dose level of $10 \mathrm{mg} . / \mathrm{kg}$. in saline-loaded rats.

Finally, three analogues of the most active benzanilides but with the halogen and sulphamoyl groups interchanged (cf. $\mathrm{V} ; \mathrm{R}=\mathrm{Me}$ or Cl) were prepared by heating the 3 -halogeno- 4 -sulphamoylbenzoic acid with o-toluidine or o-chloroaniline at reflux temperature in an atmosphere of nitrogen. They had no diuretic activity when administered to salincloaded rats at doses of $10 \mathrm{mg} . / \mathrm{kg}$.

Most of the compounds described were less potent inhibitors of carbonic anhydrase than acetazolamide. There was again no apparent connection between inhibitory activity* against carbonic anhydrase and oral diuretic activity. Thus the carbonic anhydrase inhibitory activity of 4-chloro-2'-methyl-3-sulphamoylbenzanilide was 0.32 relative to acetazolamide ($=1 \cdot 0$), whilst that of the corresponding $4,2^{\prime}$-dichloro-3-sulphamoylbenzanilide was only $0 \cdot 04$. Both compounds were nevertheless approximately equi-effective oral diuretic agents and more potent than the other compounds listed in Table III.

Experimental

Most of the following examples illustrate methods of preparation used for the products listed in the tables, which also include the analyses.

N-4-Dimethyl-3-sulphamoylbenzamide. A solution of methyl 4-methyl-3-sulphamoylbenzoate (6.8 g .) in 33 per cent ethanolic methylamine (50 ml .) was kept at room temperature for 6 days when excess of amine was boiled off. The residue was dissolved in water and acidified with hydrochloric acid. The product (5.2 g.) had m.p. 219-221 ${ }^{\circ}$ after crystallisation from methanol.

4-Chloro-NN-dimethyl-3-sulphamoylbenzamide. (a) 3-Amino-4-chloroNN -dimethylbenzamide. A mixture of 4-chloro- NN -dimethyl-3-nitrobenzamide (34.9 g .) and iron powder (35 g .) in 20 per cent ethanol (300 ml .) containing glacial acetic acid (3 ml .) was heated with stirring under reflux for 5 hr ., and was then filtered hot. The oily product which separated was isolated with chloroform and purified by distillation. It (22 g .) had b.p. 174° at 1.0 mm . and m.p. 73-75 (from benzene).
(b) 4-Chloro-3-chlorosulphonyl-NN-dimethylbenzamide. A solution of the foregoing amine (17 g .) in 24 per cent hydrochloric acid (200 ml .) was diazotised at 5 to 10° by the addition of a solution of sodium nitrite (7 g .) in water (20 ml .) and the diazo solution added slowly with stirring to a saturated solution of sulphur dioxide in acetic acid (160 ml .) containing cupric chloride dihydrate (8.5 g .). Stirring was continued for 30 min . after the addition was complete. The solution was then diluted with ice-water and the sulphonchloride collected and drained. A portion, crystallised from benzene-light petroleum (b.p. 60-80 ${ }^{\circ}$) had m.p. 106-108 ${ }^{\circ}$.

[^0](c) A solution of the foregoing sulphonchloride in chloroform (100 ml) was added with stirring to ammonia solution ($170 \mathrm{ml} ., \mathrm{d}=0.880$) and stirring was continued for 30 min . after the addition was complete. Excess of ammonia and chloroform were then boiled off and the residue acidified with hydrochloric acid. The sulphonamide which separated had m.p. $145-146^{\circ}$ after crystallisation from water.

4-Chloro-N-isopropyl-3-sulphamoylbenzamide. (a) 4-Chloro-3-chlorosulphonylbenzoyl chloride. A mixture of p-chlorobenzoic acid (156 g.), pentachloroethane (120 ml .) and chlorosulphonic acid (266 ml .) was heated under reflux for 4 hr ., cooled and poured with stirring on to crushed ice. The solid was collected, washed with ice-cold water, dissolved in 1,2-dichloroethane, washed again with water and the organic layer dried with calcium chloride. The solution so obtained was added to thionyl chloride (140 ml .), dimethylformamide (10 ml .) added as catalyst, and the mixture heated under reflux for 2 hr . Excess of solvent was boiled off and the residual oil distilled at 1.5 mm . to yield the diacid chloride (80 per cent yield), b.p. $136-138^{\circ}$ and m.p. $42-43^{\circ}$ (from ether).
(b) 4-Chloro-3-chlorosulphonyl-N-isopropylbenzamide, A solution of the foregoing compound (13.7 g .) in toluene (130 ml .) was cooled to -20° and treated with stirring with a solution of isopropylamine (6.0 g .) in toluene (60 ml .). The mixture was allowed to warm up to 10°, and was then filtered to remove isopropylamine hydrochloride. Dilution of the filtrate with light petroleum furnished the product (10.8 g .), m.p. 117-119 ${ }^{\circ}$ after crystallisation from toluene-light petroleum (b.p. 60-80 $)$.
(c) A solution of the foregoing sulphonchloride (9 g.) in chloroform (90 ml .) was added with stirring to ammonia solution ($90 \mathrm{ml} ., \mathrm{d}=0.880$) and stirring was continued for 30 min . after the addition was complete. Then the excess of chloroform and ammonia was boiled off. The residual product (7.6 g .) had m.p. $222-224^{\circ}$ after crystallisation from aqueous methanol.

2'-Methyl-3-sulphamoylbenzanilide. A solution of m-sulphamoylbenzoic acid (40 g .) in o-toluidine (40 ml .) was heated at reflux temperature, with slow removal of the water formed, for 2 hr . After cooling, the residue was extracted with 10 per cent aqueous potassium hydroxide solution (100 ml .), the extract was diluted to 800 ml ., boiled with charcoal and filtered hot. The filtrate was acidified and filtered hot. The residual product (39 g .) had m.p. $190-191^{\circ}$ after crystallisation from aqueous ethanol.

4-Chloro-2'-methyl-3-sulphamoylbenzanilide. 1. (a) 4-Chloro-2'-methyl-3-nitrobenzanilide. A solution of o-toluidine (42.8 g .) in chloroform (50 ml .) was added below 15°, with stirring and cooling, to a solution of 4-chloro-3-nitrobenzoyl chloride (39.6 g .) in chloroform (250 ml .). The product was collected after a further $15 \mathrm{~min} . ;$ it had m.p. $151-153^{\circ}$ (after crystallisation from benzene). A small second crop of material
was obtained by concentration of the chloroform liquors (total yield, 47 g .).
(b) 3-Amino-4-chloro-2'-methylbenzanilide. A mixture of the foregoing nitro-compound (36.2 g .), iron powder (34 g .), water (250 ml .), ethanol (50 ml .) and acetic acid (2.5 ml .) was heated with stirring, under reflux, for 6 hr ., and then filtered hot. The residual solid was extracted with boiling ethanol and the extract added to the filtrate. Concentration of the filtrate yielded the amine (24.2 g .), m.p. $160-162^{\circ}$ after crystallisation from aqueous ethanol.
(c) 4-Chloro-3-chlorosulphonyl-2'-methylbenzanilide. A solution of the foregoing amine (23.8 g .) in 24 per cent hydrochloric acid (200 ml .) was diazotised at $0-5^{\circ}$ by the addition of a solution of sodium nitrite ($6 \cdot 3 \mathrm{~g}$.) in water (15 ml), and the solution added dropwise, with stirring, at $20-25^{\circ}$ to a saturated solution of sulphur dioxide in acetic acid (250 ml .) containing cupric chloride dihydrate. Stirring was continued for a further 30 min . and precipitation of the sulphonchloride was completed by dilution with ice-water. It was collected, washed with ice-water and drained. A sample, crystallised from chloroform-light petroleum (b.p. $60-80^{\circ}$), had m.p. 161-163 .
(d) A suspension of the foregoing sulphonchloride (40 g .) in chloroform (200 ml .) was added with stirring to aqueous ammonia (400 ml ., $\mathrm{d}=$ $0 \cdot 880$) and the stirring continued for 1 hr . after the addition was complete. The sulphonamide separated and was collected. It had m.p. 240-242 after crystallisation from aqueous ethanol. The overall yield in the last two stages was 55 per cent.
2. 4-Chloro-3-chlorosulphonyl-2'-methylbenzanilide. (a) o-Toluidine (107 g .) was added gradually with stirring to a solution of 4-chloro-3chlorosulphonylbenzoyl chloride (273 g .) in chlorobenzene ($(1,650 \mathrm{ml}$.) and the mixture heated under reflux for about 45 min . The solution was cooled slightly and diluted with light petroleum (b.p. 80-100) until crystallisation began. The product (296 g .) had m.p. $162-163^{\circ}$ after crystallisation from chlorobenzene-light petroleum (b.p. $60-80^{\circ}$). It was identical with the product described in 1 (c).
(b) o-Toluidine hydrochloride (7.1 g .) was mixed with 4 -chloro-3chlorosulphonylbenzoyl chloride (13.6 g .) in chlorobenzene (200 ml .), and the mixture was heated at reflux temperature for 40 min . The sulphonchloride ($14 \cdot 6_{6} \mathrm{~g}$.), isolated by dilution with light petroleum, had m.p. $162-163^{\circ}$.
3. 4-Chloro-2'-methyl-3-sulphamoylbenzanilide. A solution of 4 chloro-3-sulphamoylbenzoic acid (11.8 g .) in o-toluidine (20 ml .) was heated in an atmosphere of nitrogen at $190-200^{\circ}$ for $1 \cdot 5 \mathrm{hr}$., and poured with stirring into 2 N hydrochloric acid. The solid was purified by recrystallisation from 50 per cent ethanol to yield the product (7 g .), m.p. $238-239^{\circ}$, which was not depressed on admixture with the material described under 1 (d).

4-Chloro-3,4'-disulphamoylbenzanilide. To a stirred mixture of sulphanilamide (8.6 g .) and anhydrous sodium acetate (4.0 g .) in glacial acetic acid (50 ml .) at $70-80^{\circ}$ was slowly added a solution of 4-chloro-3chlorosulphonylbenzoyl chloride (13.6 g .) in acetic acid (27 ml .). Enough water was added to dissolve sodium chloride and the sulphonchloride crystallised on cooling. It was collected, washed with cold water, and added in portions with stirring to ammonia solution ($300 \mathrm{ml} ., \mathrm{d}=0.880$). When the addition was complete, excess of ammonia was boiled off; the disulphonamide then separated on cooling. It had m.p. 294-296 ${ }^{\circ}$ after crystallisation from aqueous ethanediol.

2'-Carboxy-4-chloro-3-sulphamoylbenzanilide. (a) A mixture of anthranilic acid ($6 \cdot 9$ g.) and anhydrous sodium acetate ($4 \cdot 1 \mathrm{~g}$.) in acetic acid (70 ml .) was heated to 80°, treated with a solution of 4 -chloro-3chlorosulphonylbenzoyl chloride (13.6 g .) in acetic acid (20 ml .), and the whole heated to 110° to complete the reaction. The crude sulphonchloride, isolated by dilution, was added to ammonia solution ($150 \mathrm{ml} ., \mathrm{d}=0.880$) and excess of ammonia was then boiled off. Acidification of the residual liquid yielded the product (10 g .), m.p. 264-266 (decomp.) after crystallisation from aqueous ethanediol.
(b) 4-Chloro-2'-methoxycarbonyl-3-sulphamoylbenzanilide (13.8 g.) was dissolved in warm 0.5 N sodium hydroxide (200 ml .) and the solution left overnight at room temperature. Acidification furnished the product (12 g .). It had m.p. $264-266^{\circ}$ (decomp.) after crystallisation from 30 per cent aqueous dimethylformamide. The m.p. was not depressed on admixture with the compound prepared in (a).

4-Chloro-2'-methyl-3-methylsulphamoylbenzanilide. A solution of 4-chloro-3-chlorosulphonyl-2'-methylbenzanilide ($11 \cdot 2 \mathrm{~g}$.) in chloroform (180 ml .) was added with stirring and cooling below 10° to 10 per cent aqueous methylamine solution (100 ml .) and stirring was continued for 30 min . after the addition was complete. The product (8.4 g .) was collected and had m.p. $223-224^{\circ}$ after crystallisation from aqueous methanol. Found: $\mathrm{C}, 53 \cdot 2 ; \mathrm{H}, 4 \cdot 3 ; \mathrm{N}, 8 \cdot 2 ; \mathrm{S}, 9 \cdot 8 . \quad \mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires C, $53 \cdot 2$; $\mathrm{H}, 4 \cdot 5$; N, $8 \cdot 3$; S, $9 \cdot 5$ per cent.

4-Chloro-3-ethylsulphamoyl-2'-methylbenzanilide had m.p. 161-162 ${ }^{\circ}$ after crystallisation from toluene. Found: $\mathrm{C}, 54.5 ; \mathrm{H}, 4.8 ; \mathrm{Cl}, 9.9 ; \mathrm{N}, 8.1$; $\mathrm{S}, 9 \cdot 2 . \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 54 \cdot 5 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{Cl}, 10 \cdot 1 ; \mathrm{N}, 7.9 ; \mathrm{S}$, $9 \cdot 1$ per cent.

4-Chloro-3-dimethylsulphamoyl-2'-methylbenzanilide had m.p. 134-136 ${ }^{\circ}$ after crystallisation from methanol. Found: $\mathrm{C}, 54 \cdot 7 ; \mathrm{H}, 4.7 ; \mathrm{Cl}, 10 \cdot 0$; $\mathrm{N}, 8 \cdot 1 ; \mathrm{S}, 9 \cdot 1 . \quad \mathrm{C}_{16} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 54 \cdot 5 ; \mathrm{H}, 4 \cdot 9 ; \mathrm{Cl}, 10 \cdot 1 ; \mathrm{N}, 7 \cdot 9$; S, $9 \cdot 1$ per cent.

3-Bromo-2'-methyl-4-sulphamoylbenzanilide. A solution of 3-bromo-4-sulphamoylbenzoic acid (4 g .) in o-toluidine (10 ml .) was heated under reflux in an atmosphere of nitrogen for 2 hr ., the mixture cooled somewhat and poured with stirring into dilute hydrochloric acid. The resultant

V. PETROW, O. STEPHENSON AND A. M. WILD

solid was dissolved in dilute sodium hydroxide solution, brought to pH 10 with acetic acid and filtered hot. The insoluble product was washed with hot water. It (2 g .) had m.p. $220-222^{\circ}$ after crystallisation from aqueous methanol. Found: $\mathrm{C}, 45 \cdot 5 ; \mathrm{H}, 3.7 ; \mathrm{Br}, 21 \cdot 6 ; \mathrm{N}, 7.3$. $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 45 \cdot 5 ; \mathrm{H}, 3 \cdot 5 ; \mathrm{Br}, 21 \cdot 7 ; \mathrm{N}, 7 \cdot 6$ per cent.

3-Bromo-2'-chloro-4-sulphamoylbenzanilide had m.p. $226-228^{\circ}$ after crystallisation from aqueous ethanol. Found: C, $40.4 ; \mathrm{H}, 2.9 ; \mathrm{N}, 6.8$; $\mathrm{S}, 7.9 . \quad \mathrm{C}_{13} \mathrm{H}_{10} \mathrm{BrClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 40 \cdot 1 ; \mathrm{H}, 2 \cdot 6 ; \mathrm{N}, 7 \cdot 2 ; \mathrm{S}, 8.2$ per cent.

3-Chloro-2'-methyl-4-sulphamoylbenzanilide. A solution of 3-chloro-4-sulphamoylbenzoic acid (10 g .) in o-toluidine (45 ml .) was distilled over 1 hr . under nitrogen to remove most of the base, last traces of which were distilled off at reduced pressure. The residual solid was dissolved in 0.5 N sodium hydroxide solution (500 ml .), heated to near boiling and filtered hot. The insoluble product ($4 \cdot 1 \mathrm{~g}$.) had m.p. $218-220^{\circ}$ after crystallisation from aqueous ethanol. Found: C, $52 \cdot 1 ; \mathrm{H}, 4.3 ; \mathrm{N}, 9 \cdot 1$; $\mathrm{S}, 10 \cdot 1 . \quad \mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{3} \mathrm{~S}$ requires $\mathrm{C}, 51 \cdot 8 ; \mathrm{H}, 4 \cdot 0 ; \mathrm{N}, 8 \cdot 6 ; \mathrm{S}, 9 \cdot 9$ per cent.

References

Barr, C. R., Salminen, I. F. and Weissberger, A. (1951). J. Amer. chem. Soc., 73, 4131-4133.
Jackman, G. B., Petrow, V., Stephenson, O. and Wild, A. M. (1962). J. Pharm. Pharmacol., 14, 679-686.
Montagne, P. J. (1900). Rec. Trav. chim., 19, 46-78.
Petrow, V., Stephenson, O. and Wild, A. M. (1960). J. Pharm. Pharmacol., 12, 705-719.
Smiles, S. and Stewart, J. (1921). J. chem. Soc., 119, 1792-1798.
Ullmann, H. M. (1894). Amer. chem. J., 16, 530-543.
Wegscheider, R. and Furcht, M. (1902). Monatsh., 23, 1093-1146.

[^0]: * Determined with Mr. B. G. Overell, M.Sc., and Mrs. S. Ray.

